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ABSTRACT 

This paper describes a simple tool for power flow 
calculations on medium voltage (MV) network lines with 
the goal to calculate the network losses for every single 
MV-line in a fast way with sufficient accuracy. The 
second part describes, how this tool can be combined 
with a forecast tool. First a bagged regression tree model 
is used to forecast the overall network load. In a second 
step, this model is used to forecast the feeder loads in 
primary substations. By this a day-ahead forecast for line 
loads and line losses in the MV network is achieved. 

INTRODUCTION 

In the area of network planning, typically the maximum 
load flow situations are the critical ones and therefore 
mainly these calculations are performed. Load flow 
calculations based on profiles haven’t been in focus so far 
in MV and LV grids.  
 
For the task of a detailed analysis of network losses as 
well as the calculation of the remaining capacity of lines, 
the profiles of line loads are needed. Here the actual 
challenge is not the load flow calculation itself, but rather 
the data base of the nodal loads which have a high impact 
on the quality of results. 
 
In the following chapter, the requirements for and the 
creation of the data basis are described. Further, a profile 
based load flow calculation is performed to determine the 
line loads of every single MV line to calculate the 
network losses. 
 
The last chapters deal with a forecast model, which also 
is combined with the profile load flow calculation. An 
approach, how forecast values on the line loads of the 
network can be calculated by a simple model, is shown.  
 

DATA BASIS 

The actual challenge is not the MV-load flow calculation 
itself, but rather the data base of the nodal loads which 
have a high impact on quality of results. Typically the 
load flow calculation is based on yearly or monthly 
maximum of nodal loads. The purpose is to get 
information on the capacity of the grid in the most critical 
situations. Load profiles are not needed for this task.  
 

Results of a load profile based simulation and estimation 
become important when considering network losses and 
to optimise network operation. (e.g., to coordinate the 
work force management with actual and future network 
loading)  
 
In the SCADA System typically all load values for lines 
and transformers in primary substations are measured. 
Therefore all 110 kV lines (connections between primary 
substations) are measured on both sides. The transformers 
(in Salzburg 110 kV / 30kV) and the MV feeder-heads 
are measured in the SCADA system at least in 15 min 
time resolution. All other nodes in the MV-network are 
normally not monitored in a SCADA System (Figure 1). 
 

 

 
Figure 1: Available measurements and synthetic profiles in 
the MV-network 

Depending on installed power and yearly energy amount, 
grid customers are measured either with a load profile 
meter (15 min active power profile) or with a 
conventional meter (one energy value per year). By using 
standard load profiles, which are scaled by the yearly 
energy consumption, also for the second group of 
customers a synthetic profile based on their assigned 
standard profile is generated.  
 
One input parameter is the correct assignment of the 
meters (appr. 450,000 in Salzburg) to the network nodes. 
Therefore in Salzburg the Geographic Information 
System (GIS) is used. Hence, synthetic profiles can be 
assigned to low voltage grid nodes and in further 
consequence to medium voltage nodes. Since every LV 
metering point is only connected via one MV network 
point to the higher voltage levels, an unambiguous 
assignment is possible. By this, for every secondary 
substation a load profile in 15 min time resolution (as 
sum of measured 15 min load profiles and synthetic load 
profiles) is available. 
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PROFILE LOADFLOW CALCULATION 

To determine the network losses, the line load at every 
single section is needed. In the case of Salzburg these are 
about 13,000 line sections with 35,040 values per year 
(15 min time resolution). For this calculation the loads at 
the MV-network nodes are needed. 
 
The load profile of the secondary substations are added 
together and compared with the measured feeder value at 
the primary substation. The difference between the 
synthetic profiles and measurement value is calculated 
for each time point and then allocated equally to the 
affected network nodes. The majority of the MV-grid is 
operated as radial network. Therefore a MV-grid node is 
directly assigned to one single feeder. In case of a ring 
operation, the sum of the feeders is compared to the 
connected MV-nodes and then also equally added as an 
additional consumption / generation to the affected 
network nodes. 
 
In the next step for the load flow calculation these scaled 
node loads are used. The load flow calculation itself is 
performed in MATLAB for every primary substation 
busbar separately. The simplified DC-load flow 
calculation assumes a constant magnitude of the voltage. 
Therefore relation between node power and the node 
voltage angle can be expressed as shown in equation (1). 
[6] 
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Where ܲ is the nodal power of the node ݅, ܷ the rated 
voltage, ܻ the complex conductance of the nodal point 
admittance matrix and  ߴ the nodal angle of the complex 
voltage pointer. 
 
Equation (1) can be expressed in matrix notation. After 
the matrix inversion and the elimination of the slack node 
(the busbar of the primary substation) the angle can be 
calculated as seen in (2), where ۰ି is the inverse of the 
imaginary part of the nodal point admittance matrix: [6] 
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For the load flow the difference of the node voltage 
angles (3) has to be calculated: [6] 
 
 ܲ ൌ െܷଶ ⋅ Ա൛ ܻൟ ⋅ ሺߴ െ  ሻ (3)ߴ
 
In combination with the equation (3), this leads to 
equation (4) which describes the relation between nodal 
loads (ܘ) and line loads (ܔܘ) as matrix equitation: 
 
ܔܘ  ൌ ܔ۰ ⋅ ᇱۯ ⋅ ۰ᇱି ⋅  ᇱ (4)ܘ
 

With this line loads, the overall losses can be calculated 
as sum of the line losses (5), where ܧ௦௦ describes the 
energy value of losses, ܲሺݐሻ the load of line ݇ at the 
specific time point ݐ, ܴ the resistance value of line ݇ and 
Δݐ the time interval: 
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The DC load flow calculation based determination of line 
losses takes about 5 to 10 seconds for a primary 
substation for a whole year in 15 min time resolution. 
 

NETWORK LOSSES IN THE MV-GRID 

In the current practise losses of the MV lines are 
calculated by a comparable easy approach. First the 
annual energy values for the load flow over the HV/MV 
Transformers is calculated. To this energy amount the 
power infeed of generators in network level 5 (MV-grid) 
is added (see Figure 2 calculation of the network load). 
From this value, the line losses in the MV network are 
now calculated by a fixed percentage of 0.8% of the 
network load in network level 5.  
 
As described in the previous chapter, the results of the 
DC load flow calculation are the line load values for 
every line section in 15 min time resolution. In overall 
these are about 450 million values (13,000 line section 
times 35,040 time values per year). With these line loads 
the sum of losses of the MV-network lines is calculated. 
The resulting value is 0.845% of the network load in 
network level 5 and therefore very similar to the previous 
shown experience value. The absolute difference of the 
two given loss values is about 0.04% of the overall 
consumption in Salzburg. Therefore the previous used 
experience values are confirmed. 
 

BAGGED REGRESSION TREE MODEL 

In the following chapters the described profile load flow 
calculation will now be combined with a forecast model. 
In a first step a model for the overall network load is 
built. In later chapters the model will be used to forecast 
the single feeders in the primary substation. 
 
In Figure 2 the definition of the network load of the 
SCADA system is shown. To the measured power of the 
grid exchange with the transmission grid, the measured 
power plants are added to calculate the network load. As 
shown in Figure 2 this SCADA system network load does 
not included generation infeed of smaller power plants, 
which are not connected to the SCADA system. 
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Figure 2: SCADA system network load 

 
On basis of [2], the forecast model for the network load 
was implemented in MATLAB. Here a bagged regression 
tree model is used. A regression tree is a special form of a 
decision tree, where the target variable can take 
continuous values [3]. The term “bagged” refers to 
bootstrap-aggregated where the results of many decision 
trees are combined [5]. Bootstrap aggregating is a 
machine learning ensemble meta-algorithm designed to 
improve the stability and accuracy of machine learning 
algorithms used in statistical classification and regression 
[4]. 
 
In MATLAB the related function is called “treebagger”. 
The combination of many decision trees reduces the 
effects of overfitting and improves generalisation. The 
function TreeBagger grows the decision trees in the 
ensemble using a bootstrap samples of the data. Also the 
function TreeBagger selects a random subset of 
predictors to use at each decision split [4]. To bag 
regression trees the method “regression” was used. Also, 
like in the example [2], the forecast model was built with 
a number of 20 regression trees. 
 
For the forecast model the network load data over a 
period of three years was used. The timespan from 2014 
to 2015 was used for training the model and then tested 
with the completely out-of-sample date from the year 
2016. The time resolution for all data is 15 min. 
 
Figure 3 shows the input parameters of the forecasting 
model. The block “seasonality” gives information about 
the hour of the day, the weekday (Monday to Sunday) 
and the binary information whether the given date is a 
working day. The historical load profiles was used for 
multiple input. So the load values at the same point of 
time of one day, two days, one week and two weeks 
before, are given. 

 
 
Figure 3: System input and output of load forecast model 

Additionally the energy value of the last 24 hours is an 
input parameter. The temperature is the only forecast 
input value in this model. The load value of the next 
15 minutes is the output value of the forecast model. 
 
Figure 4 shows the importance of the input parameters. 
The historical load profiles have a similar importance to 
the output result. The most important parameters are the 
temperature and the information about the weekday. The 
given values are a result of the model building function 
“treebagger”. [5] 
 

 
Figure 4: Out-of-bag feature importance results 

 
Figure 5 shows the comparison of forecasting result with 
the actual network load of the year 2016. As Input for the 
forecast value "temperature" the actual values of 2016 
were used, which results in a "perfect temperature 
forecast". 

Forecast model 

Forecast values 
- temperature 

Historical load 
- load (t-24h) 
- load (t-48h) 
- load (t-168h) 
- load (t-336h) 
- average load last 24h 

Seasonality 
- Working day / holiday 
- Weekday 
- Hour 

Load forecast 
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Figure 5: Network load forecast - full year 2016 

The load profile shows the typical difference between 
working days and weekend. Also the higher demand in 
winter months can be seen. Especially in November, the 
production of artificial snow in the ski areas is visible. In 
Salzburg the load of snow cannons has a significant share 
of the overall network load.  
 

 
Figure 6: Forecast error by month 

The exact point of time, when the snow cannons are in 
operation, is comparably difficult to predict. Therefore, it 
can be explained that the relative error in November is 
higher than in the remaining months (see Figure 6). The 
mean absolute percent error (MAPE) over the full year is 
7.01% with a mean absolute error (MAE) of 25.9 MW.  
 
As described before, the forecast model input parameter 
“temperatures” are the actual values of 2016. In order to 
test the influence of temperature forecast errors, a noise 
signal was added. A random value in the interval [-5°C, 
+5°C] was added to every 15 min temperature value. 
Then this input signal was used for the forecast model 
instead of the actual value.  
 
 

 
The resulting forecast of the network load has a MAPE of 
7.04%. Therefore an error in the temperature forecast has 
no extreme effect on the forecast result. 
 

FORECAST MODEL FOR PRIMARY 
SUBSTATION FEEDERS 

The described profile load flow calculation is now 
combined with the forecast model. Within the project 
iNIS [1], a forecast model for the primary substation 
feeder value is generated. The synthetic profiles of the 
secondary substations are scaled, based on the forecast 
value of the beginning of the feeder. In combination with 
the profile load flow calculation in the MV network a 
forecast of the network losses as well as the remaining 
line capacities is created. 
 
For every feeder a new model is parameterised. The 
structure of the model (input values) as well as the 
method (bagged regression tree with 20 trees) is the same 
as for the overall network load (see Figure 3). 
 

 
Figure 7: Primary Substation Feeder forecast - full year 
2016 
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Figure 7 shows the forecast model for one feeder over the 
full year 2016. Additionally the forecast errors are shown 
in the subfigure. 
 
A major difference between the overall network load and 
the feeder load is, that the latter is a residual load. At the 
primary substation, only the difference between load and 
generation is observable. As shown in Figure 7, this 
residual load can have values near zero, when generation 
and loads are balanced within the feeder (here in the 
summer months). Therefore the MAPE of 54% lacks of 
significance because of division by values near zero. The 
MAE of 0.42 MW is about 15% of the mean absolute 
value of the feeder power. This example shows, that a 
single feeder is more difficult to predict than the overall 
network load. But the absolute value seems to be a 
reasonable level of error. 
 

FORECAST OF NETWORK LOSSES 

The forecast model for substation feeders was used for 
the nine feeders of one particular substation. As described 
for every feeder a new parameterised model was created.  
 
The DC load flow calculation with the scaling of nodal 
loads was run twice. One time with the forecast values of 
the feeder power and one time with the actual values. 
Then the resulting line loads and line losses over a full 
year where compared.  
 
Since the line losses are proportional to the square of the 
line loads, forecast errors have a greater impact. But the 
annual line losses in the MV-network for this particular 
primary substation are very similar when comparing the 
forecasting values (0.50% of the residual load) with the 
actual feeder values (0.52% of the residual load).  
 

CONCLUSION AND OUTLOOK 

The first results with historic data show, that the 
calculated sum of line losses matches the previous 
experience values of losses (difference about 1%). These 
experience values are a simple loss estimation based on 
the yearly energy demand. A further analysis of the 
calculation results will be performed. 
 
The bagged regression tree forecast model showed 
promising results to forecast the overall network load as 
well as the feeder load in primary substations. In the next 
steps different forecasting models (like neural networks) 
will be compared. The goal is to implement a continuous 
forecast model for line loads in the HV and MV grid. 
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