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ABSTRACT 
This paper presents a novel decoupled method for the 
power-flow expressions which are used as a part of the 
state-estimation algorithm at the low-voltage distribution 
level. The proposed simplifications are based on the 
particular characteristics of the low-voltage distribution 
network. The state-estimation results, obtained with the 
simplified method, are compared to the results of the 
state estimation with the classical power-flow equations. 

INTRODUCTION 
As a consequence of the new types of loads, increasing 
storage and DG penetration, the distribution networks are 
currently facing a transition from the poorly monitored 
passive systems towards more observable networks 
equipped with controllable elements. Thus, some of new 
functionalities have to be introduced to the distribution 
networks, one of them being the state estimation (SE). 
The purpose of the SE algorithm is to use the available 
imprecise measurements from the network and then 
calculate estimates of the state variables. Estimator relies 
on the known network topology and the load-flow 
equations.  
In order to decrease the computational burden of the 
algorithm and speed up the estimation process, load-flow 
equations can be simplified, which is an already known 
procedure from the transmission network (TN). Those 
simplifications, however, cannot be directly used for the 
distribution network (DN) load-flow calculation, because 
of the differences between the two network types. 

NETWORK CHARACTERISTICS 
Characteristics of the DN, such as element electrical 
parameters, loading, available measurements…, are 
considerably different from those in the TN. 
Dissimilarity level usually increases, as the voltage level 
of the network under the consideration decreases. 
Namely, the main difference is in the impedance ratio 
𝑅𝑅/𝑋𝑋 value, which becomes significant in the DN [1]–[3]. 
Moreover, the amount of the measurements available in 
the DN is low and loading is highly unbalanced. DNs 
usually operate radially (open-loop) and there is also a 
diversity between the different DN types (say urban vs. 
rural DN). 

STATE ESTIMATION 
The most widely used method for the SE algorithm is the 
classical Weighted Least Squares (WLS) method. Its use 
for the TN SE was introduced by Schweppe [4]–[6] in the 
1970’s. The method has proven itself to be reliable and 
quite fast using the appropriate amount and accuracy of 
the input data. The method itself and its derivatives were 
already a subject of a number of different papers [1], [7]–
[9], and only crucial information about the method and 
the SE algorithm itself is to be repeated here.  

State Estimator algorithm 
The objective of the SE algorithm is to provide realistic 
estimates of the network state variables. With all the state 
variables being known, the network state is considered to 
be defined. The inputs to the SE are the measurements of 
the network variables (powers and voltages) and the 
network topology (Ybus, switch statuses). Measurements 
can be either real (from the network), or pseudo/virtual, 
which are estimated based on the historical 
measurements or zero-injection buses.  
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Fig 1: State Estimation functions 

The SE process is graphically presented in Fig 1. It 
consists from different sub-functions, such as topology 
processor, observability analyser, bad data processor and 
of course the SE algorithm utilised with appropriate 
method [10], [11].  
The relation between the vector of the network 
measurements 𝒛𝒛, and the vector of state variables 𝒙𝒙, is 
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given with a following expression: 

 𝒛𝒛 = 𝒉𝒉(𝒙𝒙) + 𝒓𝒓, (1) 

where 𝒉𝒉 is the nonlinear function determined by the 
network admittance matrix 𝒀𝒀𝒃𝒃𝒃𝒃𝒃𝒃 and the Kirchoff’s laws 
and 𝒓𝒓 is the residual vector of the measurement errors. 
Purpose of the SE is the estimation of the state vector 𝒙𝒙 
using the chosen method.  

WLS method 
By utilization of the WLS method the state of the network 
can be defined by minimization of the following 
objective function 𝐉𝐉(𝒙𝒙): 

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚: 𝐉𝐉(𝒙𝒙) = 𝑾𝑾𝒓𝒓2 = 𝑾𝑾�𝒛𝒛− 𝒉𝒉(𝒙𝒙)�2, (2) 

where 𝑾𝑾 is the diagonal matrix of measurements weights 
defined as the inverse of the measurement variance 
matrix 𝑹𝑹. The problem is solved iteratively using the 
following expressions [7]: 

 Δ𝒛𝒛𝑘𝑘  = 𝒛𝒛 − 𝒉𝒉(𝒙𝒙𝑘𝑘), (3) 
 𝑮𝑮Δ𝒙𝒙𝑘𝑘  = 𝑯𝑯𝑇𝑇𝑾𝑾Δ𝒛𝒛𝑘𝑘, (4) 
 Δ𝒙𝒙𝑘𝑘+1  = 𝒙𝒙𝑘𝑘 + Δ𝒙𝒙𝑘𝑘 , (5) 

where 𝑯𝑯 = 𝜕𝜕𝒉𝒉(𝒙𝒙)
𝜕𝜕𝒙𝒙

 is the measurement Jacobbian and 𝑘𝑘 is 
the number of iteration. The product of the measurement 
Jacobbian and 𝑮𝑮 is the gain matrix 𝑮𝑮 = 𝑯𝑯𝑇𝑇𝑾𝑾𝑯𝑯. The 
iterative process is stopped, when the following condition 
is fulfilled |Δ𝒙𝒙| ≤ 𝜀𝜀. A mathematical explanation of the 
method can be found in [4]. 

DECOUPLING 
The state vector is defined as 

 𝒙𝒙 = [𝜽𝜽 𝑽𝑽]𝑇𝑇 , (6) 

and the vector of measurements is 

 𝒛𝒛 = �𝑷𝑷𝒊𝒊𝒊𝒊 𝑷𝑷𝒊𝒊𝒊𝒊 𝑸𝑸𝒊𝒊𝒊𝒊 𝑸𝑸𝒊𝒊𝒊𝒊 𝑽𝑽𝒊𝒊𝒊𝒊�
𝑇𝑇 . (7) 

The Jacobian matrix 𝑯𝑯 can then be written as: 

 𝑯𝑯 = �
𝑯𝑯𝑷𝑷𝜽𝜽
𝑯𝑯𝑸𝑸𝜽𝜽

𝑯𝑯𝑷𝑷𝑽𝑽
𝑯𝑯𝑸𝑸𝑽𝑽

�, (8) 

and the gain matrix 𝑮𝑮 utilising the same nomenclature as: 

 𝑮𝑮 = �
𝑮𝑮𝑷𝑷𝜽𝜽
𝑮𝑮𝑸𝑸𝜽𝜽

𝑮𝑮𝑷𝑷𝑽𝑽
𝑮𝑮𝑸𝑸𝑽𝑽

�. (9) 

Algorithm decoupling (decouple the gain 𝑮𝑮 only) 
neglects the off-diagonal elements of the gain matrix 
𝑮𝑮𝑷𝑷𝑽𝑽,𝑮𝑮𝑸𝑸𝜽𝜽. The expression from (4) then yields the 
following decoupled estimation algorithm: 

 𝑮𝑮𝑷𝑷𝑸𝑸Δ𝜽𝜽𝑘𝑘  = 𝚫𝚫𝑨𝑨, (10) 
 𝑮𝑮𝑸𝑸𝑽𝑽Δ𝑽𝑽𝑘𝑘  = 𝚫𝚫𝑹𝑹, (11) 

The right hand side of the expressions are as follows: 

 𝚫𝚫𝑨𝑨 = �𝑯𝑯𝑷𝑷𝜽𝜽
𝑇𝑇 𝑯𝑯𝑸𝑸𝜽𝜽

𝑇𝑇 �𝑾𝑾Δ𝒛𝒛, (12) 
 𝚫𝚫𝑹𝑹 = �𝑯𝑯𝑷𝑷𝑽𝑽

𝑇𝑇 𝑯𝑯𝑸𝑸𝑽𝑽
𝑇𝑇 �𝑾𝑾Δ𝒛𝒛, (13) 

In a TN solution procedure, 𝑯𝑯𝑷𝑷𝑽𝑽,𝑯𝑯𝑸𝑸𝜽𝜽 submatrices can be 

neglected due to the specific characteristics of those 
networks, namely low values of 𝑅𝑅/𝑋𝑋 ratios [3], [12]. 
Neglecting of the off-diagonal elements in the Jacobian 
matrix (model decoupling) also simplifies the right hand 
side expressions (12) and (13) to: 

 𝚫𝚫𝑨𝑨 = 𝑯𝑯𝑷𝑷𝜽𝜽
𝑇𝑇 𝑾𝑾𝑷𝑷 [Δ𝑷𝑷𝒊𝒊𝒊𝒊 Δ𝑷𝑷𝒊𝒊𝒊𝒊]𝑇𝑇 , (14) 

 𝚫𝚫𝑹𝑹 = 𝑯𝑯𝑸𝑸𝑽𝑽
𝑇𝑇 𝑾𝑾𝑸𝑸𝑽𝑽[Δ𝑸𝑸𝒊𝒊𝒊𝒊 Δ𝑸𝑸𝒊𝒊𝒊𝒊 Δ𝑽𝑽]𝑇𝑇 , (15) 

The characteristics of the DN are quite different, as 
already explained also in this paper. Therefore, different 
assumptions apply to the simplified load-flow equations. 
This leads to neglecting the 𝑯𝑯𝑷𝑷𝜽𝜽,𝑯𝑯𝑸𝑸𝑽𝑽 and 𝑮𝑮𝑷𝑷𝜽𝜽,𝑮𝑮𝑸𝑸𝑽𝑽  
submatrices. Consequently, expression from (4) 
simplifies to the following decoupled Distribution 
System State Estimation (DSSE) algorithm: 

 𝑮𝑮𝑷𝑷𝑽𝑽Δ𝑽𝑽𝑘𝑘  = 𝚫𝚫𝑨𝑨, (16) 
 𝑮𝑮𝑸𝑸𝜽𝜽Δ𝜽𝜽𝑘𝑘  = 𝚫𝚫𝑹𝑹, (17) 

There is also a difference in model decoupling, when 
compared to the Transmission System State Estimation 
(TSSE). Inspection of the values of the Jacobian matrix 
𝑯𝑯 shows a higher coupling between 𝑷𝑷 − 𝑽𝑽 and 𝑸𝑸− 𝜽𝜽 
submatrices, which is opposite to the TSSE. 
Consequently the diagonal values are neglected and the 
right hand side of the equations (16) and (17) are as 
follows: 

 𝚫𝚫𝑨𝑨 = 𝑯𝑯𝑷𝑷𝑽𝑽
𝑇𝑇 𝑾𝑾𝑷𝑷𝑽𝑽[Δ𝑷𝑷𝒊𝒊𝒊𝒊 Δ𝑷𝑷𝒊𝒊𝒊𝒊 Δ𝑽𝑽]𝑇𝑇 , (18) 

 𝚫𝚫𝑹𝑹 = 𝑯𝑯𝑸𝑸𝜽𝜽
𝑇𝑇 𝑾𝑾𝑸𝑸 [Δ𝑸𝑸𝒊𝒊𝒊𝒊 Δ𝑸𝑸𝒊𝒊𝒊𝒊]𝑇𝑇 . (19) 

There is a similarity between these two expressions, 
when compared to the TN decoupling ones shown with 
equations (14) and (15).  
Besides the decoupling itself, another simplification was 
introduced into our method. Based on the network 
impedance ratio, all the imaginary parts of the admittance 
matrices were neglected. This additionally simplifies the 
developed algorithm.  

SIMULATION NETWORK 
For the testing purposes of the developed decoupled 
method a simulation network model was developed, 
based on a real unbalanced 3+N-phased Slovenian LV 
network. The single-line scheme of the modelled LV 
network is shown in Fig 2.  

 
Fig 2: Test network scheme 

The network consists of 119 buses and supplies 77 loads. 
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There are both, 3-phase and single-phase loads in the 
network. 
The model of the network is built in the OpenDSS 
software which is run as a Matlab routine. Load power 
injections are defined with Matlab from the database of 
the real measurements. Network measurements (powers 
and voltages) are extracted from the OpenDSS 
simulation and Gaussian noise is added in order to 
simulate the real network conditions.  
No bad data is considered in this case, since only the 
comparison of the two different power-flow algorithms 
is of importance, rather than the robustness of the SE 
algorithm itself. The estimated network voltages are 
compared with the initial values from the simulation and 
both methods are compared in terms of the computation 
time and accuracy. 

RESULTS 
The outputs from the classical and the decoupled WLS 
LV SE are compared in this section. Both estimators use 
active and reactive injections with added noise and some 
voltage magnitudes as inputs, but no power flow values. 
All measurements were given a random Gaussian noise 
with zero mean 𝜇𝜇𝑃𝑃𝑃𝑃𝑃𝑃 = 0, and standard deviation value 
for power measurements 𝜎𝜎𝑃𝑃𝑃𝑃 = 0.1 and for 
voltages 𝜎𝜎𝑃𝑃 = 0.01. 

Classical WLS method 
Classical WLS method SE voltage profiles for different 
LV busses of all three phases are presented in Fig 3. The 
voltage imbalance can be observed. The red line shows 
the real voltage profile from the simulation, while with 
blue the estimated voltage profile is presented. Yellow 
circles are the node voltage amplitudes, which formed the 
input to the SE algorithm. One can notice, that these 
values are erroneous due to the added noise. A black 
dashed line is a depiction of a ± 1% deviation from the 
real voltage profile.   

 
Fig 3: Classical WLS SE voltage profile, one time step 

As it can be seen, the SE error is small. Maximal 
deviation between simulated and estimated voltage 
equals to Δ𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 0.28 %. 
Results for the 960 consecutive 15-minute steps are 
presented hereafter (exactly 10 successive days). 
Estimation is performed separately for each phase. 
Simulated voltage profile versus the estimated one, for a 
random LV network node, is shown in Fig 4. One can 

notice that both profiles match quite well. 

 
Fig 4: Estimated and simulated voltage of one LV node, 10 days 

In the end also the profile of the maximum estimation 
error for each time step is presented in Fig 5. It can be 
seen, that the error remains under the Δ𝑉𝑉�𝑚𝑚𝑚𝑚𝑚𝑚 = 0.3 % 
boundary. 

 
Fig 5: Maximal percent SE error for each step 

Estimation of each phase is timed for each step and the 
median estimation time equals to 𝑡𝑡𝑆𝑆𝑆𝑆𝑚𝑚𝑆𝑆𝑆𝑆 = 3.7 s. The SE 
duration and error will be compared with the decoupled 
method. 

Decoupled WLS method 
The presentation of results of the developed decoupled 
WLS method is presented next.  
SE results, in terms of voltage profile for different LV 
busses, all three phases and for the same time step as in 
case of the classical WLS (Fig 3) are presented in Fig 6. 
The color scheme is retained, so the red line represents 
the real voltage profile from the simulated network. Blue 
line shows the estimated voltage profile. Yellow circles 
are the node voltage amplitudes, which were given to the 
SE algorithm. Also here, the simulated values are 
subjected to the same white noise. A black dashed line is 
a representation of a ± 1% deviation from the real 
voltage profile.   

 
Fig 6: Decoupled WLS State estimation voltage profile, one 
time step 

Compared to the previous classical method, the 
estimation error for this time step retains almost the same 
with its max value equal to Δ𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 0.3 %.  
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The results for the decoupled LV DSSE for the same 10 
days as in case of the classical SE are presented hereafter.  
The simulated voltage profile versus the estimated one, 
for a random LV network node is presented in Fig 7. The 
chosen node is the same, as in case of classical SE. One 
can notice that both profiles match quite well. 

 
Fig 7: Estimated and simulated voltage of one LV node, 10 days 

The profile of maximum estimation error for each time 
step is presented in Fig 8. When compared to the classical 
SE error profile in Fig 5, one can notice a bit different 
shape. Error values during the heavy loading tend to 
increase compared to the classical SE, however, maximal 
error for the observed period is still below 1% with its 
value being Δ𝑉𝑉�𝑚𝑚𝑚𝑚𝑚𝑚 = 0.95 %. The median iteration time 
for the decoupled SE equals to 𝑡𝑡𝑆𝑆𝑆𝑆𝑚𝑚𝑆𝑆𝑆𝑆 = 1.7 s.  
 

 
Fig 8: Maximal percent SE error for each step 

CONCLUSIONS AND FURTHER WORK 
In order to prove the decrease in the computational 
burdensomeness of the developed decoupled algorithm in 
comparison with the classical one, SE iteration times for 
both methods are presented in Fig 9. Decrease in iteration 
times using the decoupled method is noticeable. 
Decoupled SE takes about 46 % of the classical SE time. 

 
Fig 9: SE iteration time distribution comparison 

Estimated voltage amplitude error for both methods is 
shown in Fig 10, for the same time step. It can be seen 
that the values of the error in the network remain the 
same. 

 

Fig 10: SE voltage error comparison, same time step and phase  

We can conclude that the presented method has a 
potential for improvement of the DSSE, since it requires 
less computational resources and at the same time it 
results in accurate estimates.  
Further work will focus on the analysis of the developed 
method robustness with development of the bad data 
functionality. Derivative of the presented method is 
planned for the field testing in a real DSSE application. 
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