DEVELOPMENT OF THE UTILIZATION AND SMART GRID INCENTIVE SCHEME WITHIN THE SWEDISH REVENUE CAP REGULATION

Berina FAZLAGIC
KTH – Sweden
berina@kth.se

Carl Johan WALLNERSTRÖM
Swedish Energy Market Inspectorate (Ei) - Sweden
carl.johan.wallnerstrom@ei.se

Ebrahim SHAYESTEH, Patrik HILBER
KTH - Sweden
ebrahim.shayesteh@ee.kth.se, hilber@kth.se

ABSTRACT

This paper provides a summary on how Swedish distribution system operators (DSO) are regulated after a revenue cap model, and describes a potential development on the current utilization incentive scheme within this regulation. The analyses are based on data from a Swedish DSO, which have been elaborated with the use of demand response program. The outcomes of the demand response simulation have in a later step been applied in the incentive calculation in the revenue cap regulation. Two different calculation approaches are used and compared in order to calculate the load factor in the revenue cap regulation.

The results of the case study show that by applying a weighted daily load factor, the DSO in the case study can receive approximately 3% additional in economic income compared to applying an average daily load factor in the incentive calculation. The motivation behind applying weighted load factor is to prioritize days with high energy consumption since those days have more impact on the costs such as losses and investments needed. Most important, the analysis display that replacing the average load factor with a weighted load factor have a non-negligible impact in the incentive calculation and hence; if the change fulfill its purpose enough, it can be motivated to have a more advanced equation than today.

INTRODUCTION

The entire energy market in Sweden, specifically the monopoly part of market, is under substantial transformation and shifting towards improving the efficiency in infrastructure design and operation. The explanation of the transformation can be explained in greater environmental awareness and due to EU’s request of pursuing 20% energy saving by 2020. To meet this target, a set of mandatory measures, called the Energy Efficiency Directive, were established in 2012 [1]. According to the Directive, all EU countries should improve the energy efficiency of all energy related processes, ranging from energy production to its final consumption [1].

As a result of these directives, the Swedish national regulatory authority (NRA) for energy; named the Swedish Energy Market Inspectorate (Ei), introduced new incentives schemes for efficient utilization of electricity distribution. The efficient utilization incentive scheme is integrated in the regulation that determines all distribution system operator’s (DSO) revenue caps. One of two imposed incentives focuses on improving the load factor and reducing the costs for feeding the grid. A deeper description of the regulation framework and the incentives of efficient utilization is described in section: 2016-2019 REVENUE CAP REGULATION. The reason to enforce incentives in the regulation framework is to drive to streamline desirable levels of DSOs’ network performance [1], which at the same time gives the DSO the opportunity to maximize financial profit by improving its utilization performance.

Purpose of the study

On behalf of the Energy Market Inspectorate, a master thesis [2] was performed, with the purpose of investigating potential indicators for efficient utilization, which could later be used in the incentive framework. The result of the study encourages and discusses a recommendation to implement a change in today's calculation of the load factor used in the regulation. Instead of using a load factor calculation based on the average of all daily values, a weighted load factor calculation should be implemented to prioritize days with higher demand energy.

The use of the weighted load factor in the incentive scheme has never fully been analyzed. From a regulatory point of a view, it is important to investigate and evaluate the outcome of using a weighted load factor in the incentive scheme before considering such change. The development work should both consider whether the method qualifies for the given directives for efficient utilization and it is also good to maintain a robust regulation over time to avoid too much uncertainty for the DSOs if possible (i.e. only implement well motivated changes).

This paper is based on a study performed at KTH Royal Institute of Technology in Stockholm in collaboration with the Swedish NRA Ei. The paper discusses and analyzes the current incentive scheme of efficient utilization and concludes whether it is motivated or not to make any developments in incentives to increase system utilization by improving load factor calculation for coming regulatory period (2020-2023). One way to evaluate the efficient utilization incentives is to apply demand response (DR) program in order to fulfill the request of efficient
utilization. DR programs have in recent years been highlighted in the electricity market due its success of providing substantial improvements in efficient utilization [3] by balancing customer’s demand of electricity with the supply of electricity. Despite that DR programs are sufficiently well regarded [3], it has not fully been emerged in Sweden. It is the NRA’s role to evaluate incentives that are objective and fair (but technology-neutral). Then other parties should decide to implement solutions, such as DR, that corresponds to those incentives.

This paper begins with an outline of the regulatory framework, emphasizing on the incentives for efficient utilization and a presentation of the calculation approaches for quantifying the load factor. The methods in this case study are: 1) arithmetic mean, which is the mean value of the daily load factors for a defined time period. 2) Weighted load factor, a function that prioritize the days with higher energy usage under the defined time period. In order to evaluate the effectiveness of the two methods, Time- Of- Use (TOU) [4] program, which is one price based demand response program that is constructed after fixed tariff rates in the electricity price, is applied in order to respond to efficient utilization and obtain improvement in the load profile. The results from the DR implementation are meant to measure the technical effects, which in the end are applied in the incentive regulation in order to quantify the financial outcome of the incentives. Based on the results, the methods of calculating the load factor are compared, and then motivated which method is the most applicable in the incentive regulation in order to fulfill the requirement of efficient utilization.

2016-2019 REVENUE CAP REGULATION

The regulation framework of power systems has been under significant change through last 12 years. In 2012 the NRA introduced an ex-ante revenue cap regulation, which covers a period of 4 years. For the regulatory period 2016-2019, the revenue framework was modified by mainly imposing new ways of calculating capital costs and performance incentives in order to stimulate the network of the power system towards the so-called Smart Grid paradigm. Figure 1 depicts the current revenue framework, shown in its full shape. For more details of the regulation, see [5].

Indicators for quantifying the incentives of efficient utilization

One of the key changes between the previous and the current regulatory period is the imposition of incentives for efficient utilization. The utilization incentives is currently divided into two parts which focus on: 1) increasing system utilization by reducing the energy losses and 2) incentive to adjust the load profile by optimizing load factor and reducing the cost to the feeding grid. The calculations of the incentives are given by equation (1) and (2), where equation (1) calculates the financial outcome of the energy losses (K_n) and equation (2) calculates the incentive for load factor and cost of feeding the grid (K_i).

\[
K_n = (Nf_{Norm} - Nf_{Outcome}) \times E_{Outcome} \times P \times 0.5
\]

\[
K_i = \begin{cases}
C_{Norm} - C_{Outcome} \times E_{Outcome} & \text{if } C_{Norm} < C_{Outcome} \\
0 & \text{else}
\end{cases}
\]

Where \(Nf_{Norm}\) [%] addresses the baseline of the network losses and \(Nf_{Outcome}\) [%] addresses the outcome of the network losses and \(P\) represents the cost for network losses [SEK/MWh]. \(E_{Outcome}\) is the outcome of the load factor (defined in the next section), \(E_{Outcome}\) represents the outcome of the total annual energy usage [MWh], \(C_{Norm}\) [SEK/MWh] represents the baseline of costs for the feeding grid and \(C_{Outcome}\) [SEK/MWh] represents the outcome cost for the feeding grid. By summarizing the incentives together, equation (1) and (2), gives to total value of the utilization incentive. The sum of this utilization incentive scheme together with a continuity of supply incentive scheme (described in e.g. [5] and [6]) can only affect +/- 5% of the total revenue cap.

Load factor calculation method approaches

Here, the load factor refers to a rate regarding the efficiency of energy usage. The definition of a load factor is based on a daily rate, which is quantified by including average value of electrical demand through the day, dividing with the peak value of energy usage that day. The definition of the load factor is obtained in equation (3):

\[
L_f_{day} = \frac{\text{Average}(E_1+E_2+...+E_{24})}{\text{Max}(E_1+E_2+...+E_{24})}
\]
Where E is the hourly load in MW and E_i refers to energy consumption during hour i of the day (i = 1-24). A high utilization rate indicates a good system performance.

Since the revenue framework and the incentive regulation are adapted after a longer time period, the quantification of the load factor is calculated based on all days during that period. In this paper, these methods of calculating the load factor used in the regulation will be analyzed and evaluated. This to highlight which one is more suitable and effective in the incentive framework. In order to evaluate and select appropriate method, these two load factor approaches are argued in this paper.

Calculation method 1 – Average load factor

The load factor that E_i currently apply in the quantification of the incentives for load is by using an average value of all daily load factors. An average load factor calculation responds to following equation (4):

$$L_f_{\text{EI outcome}} = \text{Aver}(L_f_1 + \cdots + L_f_j + \cdots + L_f_{D_N})$$

(4)

Where $L_f_{\text{EI outcome}}$ is the average load factor ratio based on total amount of daily load factors during the regulatory period, L_f_j is the daily load factor during day j based on the formula from equation (4); D_N refers to the total number of days during regulatory period. In this study D_N is covering 365 days.

Calculation method 2 – Weighted load factor

This case is based on previous study from [2] which suggests to develop and upgrade the current load factor calculation, which is used to compute the incentive given for improving the load factor and cost of grid feeding, by imposing a weighted load factor calculation.

$$L_f_{\text{U outcome}} = \sum_{j=1}^{D_N} \left(\frac{E_j^2}{\sum_{j=1}^{D_N} E_j^2} \right) \cdot L_f_j$$

(5)

Where L_f_j the same as in equation (4) is, D_N refers to the total number of days during regulatory period. D_N is in this study defined as in method 1 (i.e. 365 days), x is an exponential function for E, a weighting factor which could be defined 0 up to infinity. The higher x value the more important are the days with higher energy usage, days with lower energy usage matter less. If $x = 0$, equation (5) is equal to equation (4), if $x = 1$ there is a linear weight (i.e. double as much energy ⇒ double as much weight) and $x = \infty$ gives that only the day with highest energy matters. In this case study $x=2$, (a day with doubled energy has a 4 times higher weight). However more values of x will be evaluated than exemplified in this paper. Figure 4 gives a first example of results testing more x values as a pre-study towards future work where the weighted load factor will be evaluated further.

STUDY OF THE CALCULATION METHOD APPROACHES AND THE APPLICATION

The results of this case study are based on a data from a medium-sized DSO in Sweden, which provides data regarding the total energy demand for 1400 residential customers during a year. The total energy usage and load pattern for all customers is displayed in Figure 2.

![Figure 2 Overview of the initial load profile](image)

In order to evaluate the effectiveness of the two methods in the incentive framework, a case study in the shape of improved utilization performance has to be performed.

Simulations with Time Of Use program

In order achieve and demonstrate improved system performance by flattening the load profile, the input data is being modified by using the simulation tool MATLAB and TOU application, which is based on the mathematical formulation from [7]. The price elasticity, which one of the key factors that controls and outlines TOU performance have been given the value of -0.007 percent. The value is based on the definition on price elasticity for Swedish households from [8]. The flat price rates were considered being 232 SEK/MWh, which corresponds to ~24.4 EUR/MWh, during peak hours that take place between 16-23 o’clock, and 93 SEK/MWh = ~9.8 EUR/MWh, during the flat hours. The two price rates are determined after a project performed by Hawaiian Electric [9] and converted to Euros after currency exchange rate in January 2017 [10].

TOU program is of one several demand response programs [11] and well-known in the Smart Grid application, due its recognition for successfully overcoming unflattering spikes and inflexible energy usage.

As shown in Figure 3, the initial load profile from the DSO has been modified with TOU application in order to quantify and account the two defined calculation method approaches. Based on the result from the TOU performance, the two methods of calculating the load factor will be quantified and applied in the incentive calculation of load factor and cost of feeding the grid, in
order to receive a demonstrative and a more measurable understanding of the two efficiency ratios and its effect on the incentive framework.

Quantifying future costs for the feeding grid

The reduced cost for the feeding grid, after the improvements in the load profile, is defined after a linear mathematical proportionality, which can be obtained by using following equation (6):

\[
C_{\text{SN}}^{\text{Outcome}} = \frac{C_{\text{SN}}^{\text{Norm}}(1-L_f^{\text{Outcome}})}{(1-L_f^{\text{Norm}})}
\]

(6)

Where \(C_{\text{SN}}^{\text{Outcome}}\) is the cost of the feeding grid during the regulatory period, \(C_{\text{SN}}^{\text{Norm}}\) is the historical cost for the feeding grid, \(L_f^{\text{Norm}}\) is the load factor from the previous regulatory period and finally \(L_f^{\text{Outcome}}\), load factor during the regulatory period. The historical costs are taken from NRAs norm lists. Following data in Table 1 depicts the initial values of the indicators in this study.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Initial value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy usage</td>
<td>11 200 MW</td>
</tr>
<tr>
<td>Network losses</td>
<td>4.19 %</td>
</tr>
<tr>
<td>Cost for superior network</td>
<td>7.52 EUR/MWh*</td>
</tr>
<tr>
<td>Initial load factor</td>
<td>0.76 ; 0.79*</td>
</tr>
</tbody>
</table>

* Based on the currency exchange 1 EUR ≈ 9.50 SEK [10].
** Load factor based on method 1.
*** Load factor based on method 2.

RESULTS OF THE CASE STUDY

The results of this case study contribute to the evaluation of two load factor calculation approaches. Different TOU application results have been put into incentive calculations. The economic outcome of improving the load factor and reducing cost for feeding the grid, gives a more measurable dimension as in whole of the impact.

Figure 3 Illustrates two load profiles, the black curve is the initial load curve and the read load curve responds to power demand after implementing TOU

Figure 3 displays the performance of an improved utilization. The red curve illustrates the outcome in the load profile after TOU implementation and the black curve is the initial demand profile under a year that covers 8760 hours. With this approach, the initial and improved system profile is presented in Table 2. As it is shown in the table, the load adjustment reduce total electrical demand of 200 MW and increase the load factor with 0.05 units in both methods.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Initial value</th>
<th>Outcome of DR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy usage</td>
<td>11 200 MW</td>
<td>11 006 MW</td>
</tr>
<tr>
<td>Network losses</td>
<td>4.19 %</td>
<td>4.12 %</td>
</tr>
<tr>
<td>Load factor – method 1</td>
<td>0.76</td>
<td>0.81</td>
</tr>
<tr>
<td>Load factor – method 2</td>
<td>0.79</td>
<td>0.84</td>
</tr>
</tbody>
</table>

The final step of this study is to investigate the economic outcome of the incentive of improving load factor and reducing the costs for feeding the grid. The economic outcome is not only based on technical measurements in each method, it is as well based on the difference in the cost of feeding the grid. The outcome of the feeding grid cost is based on equation (6). These costs are summarized in table 3, for each method.

<table>
<thead>
<tr>
<th>Method 1</th>
<th>Initial value</th>
<th>Outcome of DR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feeding grid cost</td>
<td>7.52 EUR/MWh</td>
<td>5.91 EUR/MWh</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method 2</th>
<th>Initial value</th>
<th>Outcome of DR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feeding grid cost</td>
<td>7.52 EUR/MWh</td>
<td>5.68 EUR/MWh</td>
</tr>
</tbody>
</table>

*Based on the currency exchange 1 EUR ≈ 9.50 SEK [10].

Finally the entire bonus of the incentive of improving load factor and reducing the cost for feeding grid, for each case is summarized in table 4.

<table>
<thead>
<tr>
<th>Calculation approach</th>
<th>Bonus of the incentive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 1</td>
<td>16 800 EUR *</td>
</tr>
<tr>
<td>Method 2</td>
<td>17 400 EUR *</td>
</tr>
</tbody>
</table>

*Based on the currency exchange 1 EUR ≈ 9.50 SEK [10].

CLOSURE

Way forward for the NRA

One of the core obligations for the Swedish NRA is to determine the revenue cap for the DSO, which is based on DSO’s the system performance. In 2016, the regulatory framework was updated with imposing incentives of efficient utilization. One of the incentives is aiming on improving the load factor and reducing the costs for feeding the grid. A previous work from [2], which is based
on investigating the indicators of the incentive framework, gives the NRA the recommendation to impose a weighted load factor calculation approach instead of using the average load factor calculation. The outcome from the study gives the NRA input to its decision whether to adjust the load factor calculation for the coming regulatory period. Depending which method, thus weighted or average load factor, is applied in the incentive framework it can lead to a change in the revenue regulation and a discussion in performance utilization, whether the NRA only wants to target efficient utilization for the peak days or to target a balanced load profile in its hole.

Pre-study of testing more x values in the weighted load factor calculation approach

In this paper results from one specific distribution system has been presented exemplified by using x = 2 in the weighted calculation approach presented in equation (5). In Figure 4 resulting load factors with more x values are shown. It is clear that the choice of x is important since it has significant impact. However, this is just an example and in this specific case, the higher x, the higher (i.e. better) load factor. It is however not possible to say that this always is the case just from a single example. In the exemplified system, days with lower energy usage involve a higher rate of power spikes and fluctuations, but other system can have other characteristics. In the end, the x should be chosen to give a good balance between on hand giving incentives for the DSO to working for more even load curves during all days and on the other hand focus more on days with higher demand.

![Figure 4 Load factor with different x](image)

Most important, the analysis display that replacing the average load factor with a weighted load factor have a non-negligible impact in the incentive calculation and hence; if the change fulfill its purpose enough, it can be motivated to have a more advanced equation than today.

REFERENCES

