A SOFTWARE DRIVEN ACTIVE CUSTOMER INTERFACE FOR DER INTEGRATION

Jan RINGELSTEIN
Fraunhofer IWES - Germany
jan.ringelstein@iwes.fraunhofer.de

Mohamed SHALABY
DERlab e.V. - Germany
mohamed.shalaby@der-lab.net

Mihai SANDULEAC
Exenir - Romania
mihai.sanduleac@gmail.com

Lola ALACREU
ETRA I+D – Spain
lalacreu.etraid@grupoetra.com

João MARTINS
CTS-Uninova, FCT NOVA - Portugal
jf.martins@fct.unl.pt

Vasco DELGADO-GOMES
CTS-Uninova, FCT NOVA - Portugal
vmdg@uninova.pt

ABSTRACT

The Nobel Grid project is developing information technology (IT) to integrate and fully utilize flexibility potentials of demand response and end-customer operated distributed energy resources (DER) in the electric energy system. As key part of an according technical solution, we develop the "smart meter extension (SMX)" for rapid development and deployment of new functionalities at end customer premises. The document at hand reports the project results achieved so far. After summarizing our approach, we introduce the Nobel Grid architecture. We then detail the architecture focusing on the SMX. Finally, we show how the SMX can be used to implement two example smart grid functions, highlighting the SMX’s capabilities as a modular interface for software driven DER integration.

ABBREVIATION LIST

The following table lists abbreviations original to the Nobel Grid Project which are used in this paper.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DACF</td>
<td>Data access and control frontend</td>
</tr>
<tr>
<td>DRFM</td>
<td>Demand response flexible market cockpit</td>
</tr>
<tr>
<td>EMA</td>
<td>Energy monitoring and analysis</td>
</tr>
<tr>
<td>G3M</td>
<td>Grid management and maintenance master framework</td>
</tr>
<tr>
<td>RTDB</td>
<td>Real time data base</td>
</tr>
<tr>
<td>SHIC</td>
<td>Smart home intelligent controller</td>
</tr>
<tr>
<td>SLAM</td>
<td>Smart low-cost advanced meter</td>
</tr>
<tr>
<td>SMM</td>
<td>Smart metrological meter</td>
</tr>
<tr>
<td>SMX</td>
<td>Smart meter extension</td>
</tr>
</tbody>
</table>

INTRODUCTION

The conventional electric energy system is continuously undergoing a fundamental transition towards an increased share of distributed energy resources (DER) – including electricity loads, storages, and variable renewable generators - which makes grid control a challenge [1]. In recent years, research demonstrated that end customer DER control and demand response (DR) can significantly contribute to reliable, save and economically optimal operation of networks with high shares of renewables [2]. Appropriate information technologies (IT) at all system levels are considered a key enabler to control the future energy system [3]. In recent years, a vast number of consumer-level “smart IT” solutions which may be used for this have become available as off-the-shelf products [4]. Also, the emergence of smart metering in many European countries is a strong driver for energy service related IT deployment. But when it comes to using end customer’s load and DER flexibilities for advanced smart grid applications, there has been no breakthrough in mass-scale application.

PROBLEM STATEMENT

The "Smart Grid" as defined by the American National Institute of Standards and Technology (NIST) [5] introduces new advanced functionalities to different stakeholders in the electric network, e.g. the distribution system operator (DSO). Example functionalities are voltage control, grid congestion management, real-time balancing as well as self-healing, optimization of reliability, and real-time pricing [6]. But despite successful demonstrations in research, the high potential for such applications remains greatly unused. Barriers for market breakthrough generally include legislative, regulative, business model, and technological barriers, part of which are specific to the country in question. IT solutions at the customer side need to integrate into existing energy systems at the full process and value range, from enterprise down to customers. They need to seamlessly interface with state of the art technology – billing, asset management, supervisory control and data acquisition (SCADA) systems, even smart homes and building automation, to only name a few. Complexity and cost of such a solution must be adequate. Adaptation to different country policies and compliance to standards and data security requirements is mandatory. Finally, the higher-level energy systems are in constant change. Hence, smart grid IT solutions at the customer must be highly configurable, flexible and extendable by functionalities that cannot even be seen today. Even more, smart grid systems at end customers may also provide applications from the area of internet of things, new media, and building automation, which are overlapping on a technological and functional level [4].
All in all, such IT solutions are exposed to much higher
dynamics than components in the classical energy world.
Even if functionalities are limited to the smart grid area,
this basically calls for software driven systems that
enable for rapid development and deployment of new
functionalities within a high security IT infrastructure.

APPROACH

Addressing named barriers, the Horizon 2020 project
Nobel Grid was set up to develop the next level of tools
and IT services for integration of active customers and
producers (aka. “prosumers”) in the smart grid. Nobel
Grid defines an architecture including all domains of
the smart grid reference architecture model (SGAM) from
CEN-CENELEC-ETSI by a use case driven approach as
proposed by the European Mandate M/490.
It combines three central components operated by
unbundled market actors (Figure 1):

1. Grid management and maintenance master framework
 (G3M),
2. Energy monitoring and analysis app (EMA), and
3. Demand response flexible market cockpit (DRFM).

THE NOBEL GRID ARCHITECTURE

Based on project goals, requirements and a set of high-
level, primary and secondary use cases, the architecture
was detailed using the SGAM toolbox as collaborative
modelling tool. It relies on state of the art communication
protocol and data modelling standards.

The business actor definition of Nobel Grid at the SGAM
business layer corresponds to a subset of the unified
smart energy framework. It includes business actors
named above, where additional services are provided by
energy service companies and third parties which act as
external entities. The actors realize their goals through
three main business use cases: provision of flexibility
services, maximization of power reliability, and detection
and quick resolving of blackouts. The prosumer/consumer is
operating DER which oftentimes offer flexibility in operation, e.g. enabled through energy storages. With the business goal of optimizing energy usage, the prosumer/consumer provides flexibility towards the aggregator, which bundles and again sells the flexibility, for example to the DSO for grid capacity
management. Part of the realized profits are delivered
back from the aggregator to the prosumer/consumer. This
delivery is implemented through the retailer, which takes
the role of an energy supplier, managing financial
interactions between the other actors.

Figure 1: Nobel Grid actor relations

The G3M framework allows DSOs to control and manage
the distribution network, including DER. The EMA app
provides prosumers with a mobile and web tool to
analyse data concerning electricity consumption and
production in real time. The DRFM cockpit bridges
demand side and DER flexibility with the distribution
grid actors to provide services to the DSO, which support
network stability and security. The DRFM is used by
aggregators and retailers. At the customer sites, flexibility
of kW-scale DER is utilized by the central components
through a new smart low-cost advanced meter (SLAM)
which combines a classical smart metrology meter (SMM)
and a smart meter extension (SMX). The SMX
(Figures 2 and 3) is acting as a residential gateway and
communicates with the smart home environment through
a radio interface. All the tools developed in Nobel Grid
communicate with each other through a secure IT
infrastructure.

Figure 2: Smart meter extension

At the SGAM component layer, G3M components at
the DSO operation center, DRFM and EMA central
components at the aggregator/retailer premises and
SMX/SLAM at the customer/prosumer home are defined
as main software-driven components. Figure 3 shows
these components arranged around the SMX. The
components inside the SMX are referred to in the
following sections.
The SMX continuously exchanges supervision and control information with the G3M, DRFM and EMA centrals utilizing communication drivers, which are labelled "D" in Figure 3. The connection between G3M/EMA and DRFM is used for organizing demand response campaigns. G3M, DRFM and EMA use three software modules:

1. The data acquisition and control frontend (DACF), a repository of drivers and services covering all the communication protocols that are required,
2. the actor specific data repository, providing a real-time database and a middleware interoperability service and providing policy and security enforcement, and
3. the actor specific big data repository, a database for holding historical measures that are related to the smart grid.

Also sketched in figure 3 is an enterprise service bus (ESB) which is used at each control center along the DACF for organization of information transfer. The three modules share a common code base, but are - in line with the principle of market unbundling - installed as independent instances in each of the actor’s control centers.

The SGAM communication layer defines communication protocols for information exchange. They have been drawn from those recommended by CEN, CENELEC and ETSI. Controllable kW-scale home appliances and DER are supervised and controlled by smart home intelligent controllers (SHIC). Local-area network communication between SHIC and SMX uses IEEE 802.15.4 based 6LowPan as physical layer and IPSO objects as application layer. SMX and SMM, whose hardware can be bundled as SLAM, communicate through DLMS/COSEM. Also, the SMX may communicate to local PV and battery inverters through MODBUS/TCP. For wide-area network information exchange from or to the SMX, DLMS/COSEM is used for billing relevant metering data, tariff data, load profiles, meter instrumentation values, power quality data and events. IEC 61850 is used for SCADA and other smart grid related activities, including DER monitoring and control by the G3M. OpenADR Profile V2.0b is used to support demand-response activities by the DRFM. Finally, message queue telemetry transport (MQTT) is used for implementation of energy services.

At the SGAM information layer, data models associated to DLMS/COSEM, IEC61850 and OpenADR are used. In addition, we use the common information model (CIM) data model for exchange of information between different components at the DSO premises.

SMART METER EXTENSION

As can be seen from the architecture, the SMX acts as a kind of pivot point in the Nobel Grid system, providing data hub and firewall functionality. It has been developed as highly modularized interface between DER and central systems, connecting the consumer/prosumer private premises at one side with the control centers at the other side, and fully integrates into process and communication chains. Our SMX implementation relies on off-the-shelf low-cost embedded systems, like Raspberry Pi and BeagleBone Black, and open source software. It uses a Linux operating system with customized scheduler; its internal architecture relies on strict separation of trusted and non-trusted zones at the operating system level. Both zones share access to a real-time data base (RTDB, cp. Figure 3) which offers a secure, role-based access model. The data model used at the RTDB is an extension of the COSEM data model. Real-time data is accessed through MQTT, while persistently stored data is accessed through representational state transfer (REST). At the trusted zone, communication drivers interfacing to the local area networks are placed. At the non-trusted zone, functionalities with communication to wide area networks – and thus the Nobel Grid control centers – are implemented in virtual machine sandboxes. We use Docker as software solution for this. The concept allows third party applications to be installed at the non-trusted zone, hence making the SMX an open and modular software driven smart grid component. The SMM can be an existing smart meter with local communication interface, resulting in a cost effective and highly adaptable smart grid key enabler that can be certified for use throughout Europe.
Basic functionality
The SMX acts as a meter gateway which at the same time enables complex functionalities and support for:
- Smart grid – by delivering real-time data in a traditional or synchro-SCADA mode [7];
- Power quality – by allowing essential assessment on continuity of supply and on voltage level [8,9];
- Energy services – by supporting recording of energy load profiles down to one minute resolution combined with appropriate recorded events, in order to properly record services such as demand response [10];
- Dynamic energy markets – by allowing real-time interaction between the market and the prosumer;
- Local production and storage control – by allowing to host specialized software agents which can control and optimize use of these local resources;
- Security and privacy – by providing a single communication endpoint for the remote control centers and acting as a firewall for the prosumer/consumer premises.

Software Stack
The SMX software stack is built around the RTDB with role-based access control system featuring external actor individual privacy policy, which is a combination of country specific rules and prosumer preferences. The system is strictly dividing trusted and non-trusted software zones. Drivers for the SMM, SHIC and inverters at the local area networks are located at the trusted zone, while third party apps connecting to the internet and central components are located in sandboxes at the non-trusted zone and executed within Docker environments (cp. Figure 3).

Due to the database-centric architecture, strict control of data access is possible. This means that data cannot be generally exchanged between different applications, because they can have different access rights. Any access to the data is made by interaction with the real-time database, through JSON messages which can be well filtered by role based access control. Also, trusted and non-trusted drivers are interacting with the database only, and any application consuming this data needs to interact separately with the same database, with its specific access rights.

Since being exposed to the internet, cyber security needs to be treated at highest level, because the SMX stores energy data convertible in billing data, thus in money, and it supports the smart grid ecosystem. In order to address this, each external actor can communicate with the SMX only through its own virtual private network, with its own credentials and in its sandboxed environment. With this strategy, external interaction can happen only within controlled environments, thus drastically reducing the risk of cyber-attacks. Correct implementation of this approach removes any open input ports to be accessed from the outside, the SMX having the initiative for any connection being made by the local virtual private network client.

Appliance operation is automated by the generic SHIC. The SMX bundles local and wide area communication standards and protocols, and it can host functionalities from different manufacturers.

Rapid Development of Smart Grid Applications
For implementation of SMX functionalities at the untrusted zone as "sandboxed" apps, Nobel Grid aims to provide rapid development tools. One possible basis for this is the Open Gateway Energy Management (OGEMA) framework, an advanced middleware for energy management provided by Fraunhofer IWES (cp. www.ogema.org). It provides a platform where an arbitrary number of concurrently running applications can carry out energy management and building automation functions. OGEMA defines data resources representing real-world physical entities, units or devices which follow a standardized object oriented, unambiguous data model. It provides various core services for apps which allow for secure resource access, provision of web interfaces, and event-based functionality implementation. With support from Nobel Grid, an OGEMA Java software development kit (SDK) was created providing plugins for the commonly used Eclipse integrated development environment. It is currently used in order to implement the core SMX functionality of providing and activating flexibility of PV and battery systems towards the DRFM.

SOFTWARE DRIVEN APPLICATIONS
Integration of Grid Supporting Inverters
This section describes a PV inverter-based solution with combined PV production and local storage, as an all-in-one solution for grid connection. Combining production and storage, it acts as a hybrid resource where storage can be used for both storing unused PV energy and also surplus energy from the network. Advanced grid services are enabled through connecting the inverter to the SMX.

In the Nobel Grid project, we use a quasi-z-source inverter due to its advantage on reducing component rating and constant DC current from the power source. Moreover, the inverter can boost the input voltage in single stage by introducing a special shoot through switching state.

The PV power interface is controlled to support the grid regarding unbalancing currents. If the load current is unbalanced, the PV system AC currents amplitude will also be unbalanced in order to balance the grid currents [11]. The reference of the amplitude of the PV AC currents is defined to compensate the imposed unbalance on the grid demanded currents. In case the power injected by the PV system is bigger than the power demand by the on-site loads, the PV inverter interface can supply the grid or send the excess power to the storage device.
To control the PV power interface, several functions were defined and implemented to measure values and to define set points. The measurement values include active and reactive powers, phase shift, battery voltage, current and state of charge. The control functions allow to set active and reactive powers, phase shift, operation mode and constraints. Functions implemented at the non-trusted zone of the SMX may access the inverter values and functions through the RTDB and an inverter driver placed at the trusted zone. The driver places measurement data received from the inverter through MODBUS/TCP at the RTDB, ready to be read by non-trusted zone apps which are equipped with appropriate access rights. These apps may again write power set points, operation modes or constraints to the RTDB, where they are read by the driver and translated to MODBUS/TCP commands, which are exchanged with the inverter. This design exposes the inverter’s functions at the non-trusted zone, where e.g. an IEC 61850 server could be placed with an according wide area network driver for connection with the G3M (cp. Figure 3). This would be an example for an SMX low-level function which does include data receival, storage, translation and sending, but does not involve data processing at the SMX.

DER Flexibility Usage

As an example for a high-level SMX function which includes data processing and analysis at the SMX, we take another look at the flexibility ("flex") app shown in figure 3. This app is designed to supervise the operation of PV generators and batteries, and to calculate and predict the amount of flexibility that can be provided by changing the DER operation modes, e.g. storing residual PV generation into the battery instead of feeding it into the grid or derating the PV generator. The flexibility information is prepared and exchanged on request with the DRFM control center using openADR messages. The flex app utilizes a solar irradiation forecast as external information from a third party, fetched by yet another app, to predict the PV generation and calculate future flexibilities. Control of the PV-battery system and activation of the flexibility potential on request by the DRFM central station is a task carried out by an additional app which is communicating to the RTDB only (not shown in figure 3). In Nobel Grid, we implement named apps in a single Docker sandbox using the OGEA SDK. This high-level function highlights the SMX capabilities of providing software driven smart grid functions in a secure environment.

ACKNOWLEDGMENTS

This research was funded by the Nobel Grid project (European Union’s Horizon 2020 research and innovation programme under the grant agreement number 646184).

REFERENCES

